

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

CONTINUOUS INTEGRATION

&

CONTINUOUS DELIVERY

 MICROSERVICES IN AND OUT

Organization should be culturally aligned, as well as provide a subtle environment

in adopting to a Micro Services architecture. Transitioning or Developing

applications using Micro Services architecture is definitely not a cake walk. While

the popularity of Micro Services is high, developers and testers really find it difficult

in transitioning a monolithic style application to a micro services build architecture.

This popularity is partly off the back of trends such as Cloud, DevOps and

Continuous Delivery coming together as enablers for this kind of approach, and

partly off the back as great companies have implemented successful micro services

architecture that is well suited for their business.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

AN INTRODUCTION

Over the past decade, Mobile Technology has replaced many traditional devices,

processes, lifestyle and way of doing business. While Mobile landscape has

increased the scope of doing business and has created a new gateway to an era of

apps, we must also understand how deeply it has penetrated into the life of each

individual. Accidents have increased due to mobile text-drive, speak-drive, and

radiations from the telecommunications tower have proven to harmful to living

beings. Setting up mobile platform involves huge operations and effort. Having

said this, the growth of Mobility does not decline after have seen the business

benefits reaped out of it.

Micro Services are one of those ideas that are nice to be implemented, at the same

time involves high end complexity when it meets reality. The pre-requisite to build

applications’ using Micro Services architecture that an organization should be

prepared and that that the developer, tester, architect and the project manager

should be aware of –

❖ Network is homogenous, reliable and secure with zero latency

❖ DevOps culture. All incidents should involve ops and dev

❖ Rapid Application Development. Deploy quickly to test and production

❖ Complete Automation – Installation, DB upgrades, Configuration

❖ Rapid Provisioning. Servers and Environments are disposable

❖ Hosts are immutable

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

FACTS TO CONSIDER

Substantial Infrastructure Operations

The proponents of the Architecture enable all the tools and resources required to

set up a Micro Service platform. While a Monolithic application is straight forward

to deploy in a small server cluster, Micro Services talks about tens of separate

services to build, test, deploy, integrate and run to a single server in a polyglot

environment. These services essentially need the application server running full

time with a high storage space that is network resilience and reluctant to

downtime. If each service has its own database, then handling the association of

data between different databases and availability of those databases 24/7

increases operations effort. Only when there is complete Automation in place to

test and deploy a build, enablement of Micro service can be achieved. Automation

here again talks about implementing set of tools and governance practice that

would be required to set up a DevOps environment.

Workforce Up-Skill
As there are pre-requisite to set up an environment to build Micro Services, there

requires necessary requisite skill for a Developer to possess in order to work on

micro services. We are talking about upskilling or cross skilling the existing team

or hire a set of resources with good knowledge in DevOps function. A Developer

with just programming and database knowledge alone cannot build a micro

service, while that is easily achievable to build a monolithic application. When we

are talking about resources with DevOps experience, we are also talking about

substantial amount of time and effort required to train these resources or hire them

from outside world. Human Resource becomes a high order of magnitude to think

through while implementing a Micro service architecture.

Imbedded Interfaces

When we are breaking systems into multiple components, we have to introduce

explicit interfaces between them to have an integrated system. There will also be

several external interfaces like the data storage, payment functions, etc. Hence the

message format on all the services have to semantically same to understand the

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

syntax and communicate with the each other. Since, there would be separate micro

service for each of the function, at times we might have to ignore the fact of phase

wise release as any of the function need not to have to be integrated during release

A or B. In Micro services, Interfaces act as contracts and changing contract or

having no contract requires changing multiple services.

Effort Duplication

Assume that there is a new requirement to change the way price is calculated for

a certain product line. In a typical Micro Service environment, we introduce a new

service and allow other services to call wherever needed to append this

requirement. We could not take this call lightly, as there is a potential synchronous

coupling into the system. In order to avoid the coupling effect, we would have to

duplicate the effort by introducing the price change in all of the services. In

addition to the duplicate effort, we also increase the effort of testing and

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

maintenance going forward. Or, there is also other option of sharing the resources

between the services to make sure the new change is coming into effect. In a

Monolithic style application, it will be just writing or appending a piece of code

and making it available through the application irrespective of the services and

calls.

The first step before building an application using Micro Service architecture is to

have setup web services using Restful API. SOAP based web services are common

in use in a Monolithic application. If the transition has to happen from a monolithic

application that uses SOAP UI, then we would need to refactor the SOAP interfaces

to entity based REST interfaces. Micro service imply a distributed system and hence

we introduce a lot of remote procedure calls, REST API’s or messaging to stitch the

components across various processes and different servers.

Testing Complexity

It can be difficult to create a sandbox test environment for each of the service in

manual or automated manner. With Asynchronicity and dynamic message load,

the test systems fails to get confidence of releasing the build to production without

testing the different scenarios. Micro Services architecture built with SPRING BOOT

framework emphasis on monitoring the app before reaching production that

however fails to detect bugs and functional changes to the environment. However,

testing micro service at an isolated environment helps to achieve a bug free

application at that unit or component level, but when it comes to integration

testing with a dynamically changing environment, the test team have to pre-

occupied with all the tools, processes and automation in place.

CONCLUSION

Currently, not any service provider or system integrator provide a complete

framework and open source the tooling part to support a micro service from an

operational perspective. It's likely therefore that a team or organization rolling out

Micro services will need to make significant investment in custom scripting or

development to manage these processes before they write a line of code that

delivers business value and make sure there is Automated Testing place at each

phase start from the Design till deployment.

