

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

CONTINUOUS INTEGRATION

&

CONTINUOUS DELIVERY

 TESTING MICRO SERVICES PART I OF II

Testing Micro Services is an area that cannot be avoided or procrastinated to any

point of time. Each services’ build before it reaches the deployment stage must be

ensured that it passes the test criteria defined by the project team. While the

Project team / Organization focusses on Designing and Developing Applications

using Micro Services, it is also equally important to design Testing Strategies to

test those Micro Services. A combination of testing methods along with tools and

frameworks that can provide support at every layer of testing is key. We may not

be able stick to the traditional model of testing, as in an agile environment changes

are very dynamic and with a micro service, we would have to deep dive into each

layer to make sure there is not a hit in the production environment.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

AN INTRODUCTION

The independent nature of Micro Services possesses significant challenges to the

Testing team. Picking the right tools that are inclined to test the Web API, SDK’s

that are built around SOA becomes a necessity factor in order to automate the

Testing process. The Test pyramid gets a little wider and deeper with Integration

Testing, Component Testing and Contract Testing coming into the framework

above Unit Testing. A bottom-up approach to testing improves stability of the

micro services as they are developed. It is also very essential to remain light weight

while we are implementing the various tests to test a service, at the same time

make sure that there is a coverage to each layer and layers of service.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

UNIT TESTING

Any function has to be tested at the unit level first, by testing the code written by

the Developers for a particular service. Unit Testing is done usually at class level by

testing a small piece of behavior and make sure the code works correctly at the

lowest level. Unit Testing focusses on small test suite by testing the behavior of

modules. Test Doubles looks the interactions and collaborations between an object

and its dependencies.

In a micro service, unit tests are most useful in the service layer, where they can

verify business logic under controlled circumstances against conditions provided

by mock collaborators. They are also useful in domain logic, resources, repositories,

and adapters for testing exceptional conditions. Unit Tests have to be executed

frequently, with each build. To follow an automated process, we can configure Unit

Tests on a Continuous Integration server (say Jenkins) that constantly monitors for

changes in the code.

 COMPONENT TESTING

In micro services, components are services that tests a portion of the system. Tests

written at this granularity makes it possible to thoroughly acceptance the test

behavior. This is done by creating an internal interface inside the unit for testing

before reaching the production. Component Testing is also otherwise called

‘Functional Testing’, where the services test to verify integration of all components

is functionally correct that do not require external dependencies. Testing is done

in isolation by using mock components or by creating a Test Service on the same

server and test the complexity contained within that micro service, but make sure

that that final application code reaches the production and not the test code.

The scope is limited to a single component and Testing is done using the same

technology that incoming requests would use, restful api for example. This method

also thoroughly tests the network calls for that particular service and the results

are quick, so that developers can gain confidence that whatever changes they have

made, does not affect any other service or component. Test doubles can be

configured to isolate the micro service from external service that allows error

conditions tested in a controlled environment and repeatable manner. Mock

implementations can be avoided by testing against external devices with recorded

responses. Though this practice is more realistic and traditional, there is a

complexity involved in order to maintain the recorded responses for each service.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

FACTS TO CONSIDER

Test for agreed set of input and output attributes is set to be defined as Contract

Testing. In other words, the boundary of an external service is verified that it meets

the contract expected by consuming the service. Contract Testing makes sure that

any additions shouldn’t break the existing functionality of the service, even as the

service changes overtime. The production team are well aware of the impact of the

changes on their consumers by looking at the test suites written by the testing

team that are well packaged and runnable in build pipeline for producing services.

In Micro Service there is a contract involved with each of the service that interacts

with the Producer.

Mock frameworks can be used to fake responses from external services that gives

the possibility to test services in an isolated environment without relying on

external services. They can also be used as Integration Contract Testing to validate

the parameters that are passed to the external service are integrated to receive the

correct request. When there are different teams that run tests for different services,

which means essentially each team have their own contract testing to be executed.

A service contract can be defined by the maintainer by looking at the different

contract tests. Service contract can be used to manage changes as in when they

are introduced.

Scenario:
Consider a service that exposes a resource with three fields, an identifier, a location

and an order. This service is adopted by three different consumers coupled to

different parts of the resource. Consumer A couples to only the identifier and

location field. This does not make any claim regarding the order field. Whereas

Consumer B couples to the identifier and order fields, and does not make assert to

the location field. Consumer C requires all three fields and has a contract test suite

that affirms they all are present and communicating.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

When a new consumer adopts the API but requires both location and address, the

maintainers can choose to deprecate the location field and introduce another field

containing an object with location components. The maintainers can check the

Service contract, remove the old location field and see which contract test fail. In

this case, Consumer A and C would have to be notified on the change. Post

migration, the deprecated field can be removed from Consumer A and C. For this

process to be effective, the service contract need to be updated on a regular basis

with fields that are not important.

This is an example of how an API can be changed over a period of time without

breaking the contract of the consumers. To test this efficiency is known to be

Contract Testing. These tests can be automated with a variety of contract testing

tools.

